Cholera toxin blocks glucagon-mediated inhibition of the liver plasma membrane (Ca2+-Mg2+)-ATPase.

نویسندگان

  • S Lotersztajn
  • C Pavoine
  • A Mallat
  • D Stengel
  • P A Insel
  • F Pecker
چکیده

We have previously shown that liver plasma membrane (Ca2+-Mg2+)-ATPase activity is inhibited by glucagon. To investigate the possible involvement of a GTP-binding (G) protein in this regulation, we have examined the effects of pertussis toxin and cholera toxin on inhibition of (Ca2+-Mg2+)-ATPase by glucagon. Treatment of liver plasma membranes with pertussis toxin did not affect the sensitivity of (Ca2+-Mg2+)-ATPase to the hormone. In contrast, treatment of plasma membranes or prior injection of animals with cholera toxin prevented inhibition of the (Ca2+-Mg2+)-ATPase by glucagon. Even though adenylate cyclase activity was increased by cholera toxin treatment, addition of cyclic AMP did not mimic the effect of cholera toxin in blocking glucagon-mediated inhibition of (Ca2+-Mg2+)-ATPase activity. These data suggest that a cholera toxin-sensitive protein, perhaps Gs or a Gs-like protein, is involved in the regulation of liver (Ca2+-Mg2+)-ATPase activity. The results emphasize the possible role of Gs-like proteins in regulation of enzymes other than adenylate cyclase and suggest that the study of (Ca2+-Mg2+)-ATPase may provide a useful enzymatic system to examine such regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition by glucagon of the calcium pump in liver plasma membranes.

The ATP-dependent calcium transport in plasma membrane vesicles prepared from rat liver was inhibited by 0.1 to 10 microM glucagon. Inhibition of the high affinity (Ca2+-Mg2+)-ATPase was observed concomitantly. This effect was neither mimicked by cyclic AMP nor by dibutyryl cyclic AMP. A study of the structure-activity relationships of six glucagon derivatives demonstrated the specificity of gl...

متن کامل

Ca2+/calmodulin-dependent protein kinase II is an essential mediator in the coordinated regulation of electrocyte Ca2+-ATPase by calmodulin and protein kinase A.

The aim of this study was to investigate (a) whether Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) participates in the regulation of plasma membrane Ca2+-ATPase and (b) its possible cross-talk with other kinase-mediated modulatory pathways of the pump. Using isolated innervated membranes of the electrocytes from Electrophorus electricus L., we found that stimulation of endogenous ...

متن کامل

The rat liver plasma membrane high affinity (Ca2+-Mg2+)-ATPase is not a calcium pump. Comparison with ATP-dependent calcium transporter.

The high affinity (Ca2+-Mg2+)-ATPase purified from rat liver plasma membrane (Lin, S.-H., and Fain, J. N. (1984) J. Biol. Chem. 259, 3016-3020) has been further characterized. This enzyme also possesses Mg2+-stimulated ATPase activity with K0.5 of 0.16 microM free Mg2+. However, the Vm of the Mg2+-stimulated activity is only half that of the Ca2+-stimulated ATPase activity. The effects of Ca2+ ...

متن کامل

Hormonal regulation of glutathione efflux.

The efflux of GSH has been shown previously to be a saturable process in both isolated rat hepatocytes and perfused liver, suggesting a carrier-mediated transport mechanism. The possibility in hormonal regulation of this process has been raised by recent reports. Our present work examined the role of hormones known to affect intracellular signal transduction mechanisms on GSH efflux in cultured...

متن کامل

A high affinity Ca2+ -ATPase in C57 black mouse liver plasma membranes.

Plasma membranes of a cell contain 2 kinds of Ca2÷-extruding mechanisms to maintain [Ca 2÷] of cytoplasm at submicromolar levels, ATP-dependent and extracellular NaLdependent mechanisms. In plasma membranes of several tissues, the ATP-dependent Ca2+-pumps associate with (Ca 2+ + Mg2÷)-ATPase activity [ 1-3 ]. In the case of erythrocyte plasma membrane, a reconstitution study has clearly demonst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 262 7  شماره 

صفحات  -

تاریخ انتشار 1987